
Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, 
Cambridge, UK, 11-15th July 2005 
 

SOME INVERSE PROBLEMS IN SYSTEMS OF NONLINEAR PARABOLIC EQUATIONS 
 
D. A. MURIO
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA  
email: diego@dmurio.csm.uc.edu

Abstract - Assuming only Cauchy noisy data at the active boundary, we investigate the inverse problem of 
numerically recovering the solutions, gradient distributions and initial conditions, in nonlinear systems of 
parabolic partial differential equations with space dependent coefficients, by means of stable space marching 
methods. If the initial condition of the system is known, we also discuss, in the Cauchy data case, the inverse 
problems associated with the identification of some of the space dependent coefficients in the Lotka-Volterra 
model with diffusion, while marching in space. Stability and error analysis of the algorithms, together with 
numerical results of interest, are presented.  
 
1. INTRODUCTION 
A stable numerical marching scheme based on discrete mollification is used to recover the solution vector 

 including  in a nonlinear parabolic system of the form ( , ),u x t ( ,0),u x
( ( ) ) ( , ),t x xu a x u f u x= +  

1 10 , 0x x t t< < < < ,  
(0 ) 0u t, = ,  
(0 ) ( )xu t tα, = ,  

10 ,t t≤ ≤  

1 1with positive constants  and .x t    
    Note that in this problem, the data vector is known approximately and the space dependent diffusion, 

and the interaction function, 
( )tα

( ),a x ( , ),f u x are known throughout the rectangular domain. The proposed 
algorithm does not require a priori information about the noise in the data and the mollification parameters are 
chosen automatically at each step using the Generalized Cross Validation (GCV) method, [6]. For a detailed 
description of mollification techniques, the reader is referred to [2]. 
     In a related problem, if the initial condition is given, we study the approximate identification of some 
of the space dependent coefficients in the Lotka-Volterra model with diffusion. For instance, given 

( ,0)u x
F  

interactive species, the source elements are given by  

1
( , ) ( ( ) ( ) ), 1, , ,

F

i i i i j j
j

f u x u b x B x u i F
=

= + =� �  

and it is possible to recover F  unknown coefficients from the set of (1 )F F+  components of the F dimensional 
vector b and the F F× dimensional matrix .B  
     This article is organized as follows: in section 2, we state basic properties and estimates corresponding to 
mollification. In section 3, the numerical marching scheme is introduced. The proof of stability and 
convergence is given in section 4. Two numerical examples of interest are shown in section 5. The second one 
illustrates the general procedure for the identification of space dependent coefficients in some specific 
biological models.  

 
2. DISCRETE MOLLIFICATION 
Let and be the discrete version of : [0,1]g I = → � 1{ }M

i iG g == g defined on the set { : ,1 },iK y i i M= ∈ ≤ ≤�  

10 y≤ ≤ 1.My≤ ≤�  The discrete - mollification of  is the convolution with the Gaussian kernel  δ G
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where [ , ],I p pδ δ δ= − 0p > , 0δ > and 
1

2exp( ) .
p

p
p

A s ds
−

−

� �
= −� �
� �
� �
�   

    That is, for every   ,y Iδ∈

1
1

( ) ( ) ,
i

i

sM

i
i s

J G y g y s dsδ δρ
−

=

= −� �  

where  and 0 0, 1,Ms s= = 1 , 1,2,..., 1.
2

i i
i

y y
s i M+ +

= = −   
    The radius of mollification  is chosen automatically using the GCV method. ,δ
     The perturbed version of  is given by where the ’s are a 
family of independent random variables, uniformly distributed in the interval [ , , and  represents the 
maximum level of noise in the data. That is, if  denotes the maximum norm, then   

G { : | | , 1, 2,..., },i i i iG g g i Mε ε ε ε ε= = + ≤ = iε
]ε ε− ε

. ∞� � , .KG Gε ε∞− ≤� �

     First and second derivatives are approximated, respectively, using the finite difference operators 
 

0 ( ( )) [ ( ) ( )] /(2 )D g x g x x g x x x= + ∆ − − ∆ ∆  
and 

2

0

2( ( )) [ ( ) 2 ( ) ( )] /( )D g x g x x g x g x x x= + ∆ + − − ∆ ∆  
 

on the interval Iδ =� [ pδ +  , 1 ].x p xδ∆ − − ∆
     The following lemma establishes the numerical properties of discrete mollified differentiation, as defined 
above, for fixed  Note that, throughout the paper, denotes a generic constant that is independent of  .δ C .δ
 
Lemma 2.1 (Stability and Convergence) If 2 ( )g C I∈ , 0 ( ),g C Iε ∈  and IG Gε ε∞,|| − || ≤ ,  then  there exist 
constants C  and , such that  Cδ

( )I ,g J G C x
δ

ε
δ δ ε∞,|| − || ≤ + + ∆  

2

0
( ) ( ) ( ) ,I

x
D J G C C x

g
x

ε

δ δδ

ε

δ∞,
+ ∆

− ≤ + ∆
∂
∂

|| ||  

and 
2

0

2
2

2 2
( ) ( ) ( ) .I

x
D J G C C x

g
x

ε

δ δδ

ε

δ∞,
+ ∆

− ≤ + ∆
∂
∂

|| ||  

     The proof of Lemma 2.1 can be found in [3]. 
 
     We define  by restricting 0 0( ) ( ) |I KD J G D J G

δ

δ
δ δ ∩=

�

, )0 (D J Gδ  to the grid points of .I Kδ ∩�   

     The next theorem provides an upper bound for the maximum norm of the operator 0 .Dδ  
 
Theorem 2.2   There exists a constant such that   C

0 ,,|| || || || .KI K

CD G G
δ

δ

δ ∞∞ ∩ ≤
�

 

     The proof of this theorem can also be found in [3]. 
 
3. MARCHING SCHEME 
The regularized problem is obtained by mollifying the original system. The numerical marching scheme attempts 
to compute a meaningful approximation to the solution, the  initial condition,  and  gradient  distribution  vectors,  

 
1( , ) ( ( , ), , ( , )) ,T

Fv x t v x t v x t= �  

1( ,0) ( ( ,0), , ( ,0)) ,T
Fv x v x v x= �  

1( , ) (( ) ( , ), , ( ) ( , ))T
x x F xv x t v x t v x t= �  

   
and            

1( , ) (( ) ( , ), ( ) ( , )) ,T
t t F tv x t v x t v x t= �  
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of the mollified  system  of parabolic partial differential equations given by 
 

( ( ) ) ( , ),t x xv a x v f v x= +  
1 10 , 0x x t t< < < < ,

ε

 
(0 ) 0v t, = ,  
(0 ) ( )xv t J tε

δα, = ,  
10 .t t≤ ≤  

 
     The available data function is a discrete vector function such that  and it has been 
mollified. 

( )tεα ,K
εα α ∞− ≤� �

     In order to introduce a stable numerical scheme, we require the F F× diagonal diffusivity matrix 
to be positive and the forcing term to be uniformly bounded and Lipschitz with 

respect to its first argument. The following two assumptions are quite natural: 
1( ) ( ( ), , ( ))Fx diag a x a xα = �

 
Assumption 3.1 For all there exists a constant 1[0, ],x x∈ ξ  such that 

1

1min ( ) 0.ii F
a x

ξ≤ ≤
≥ >  

 
Assumption 3.2   For all  and functions  there exist constants 1[0, ],x x∈ 1, : [0, ]u w x → � 1L   and 2L such that  

 
11

max | ( , ) |ii F
f u x L

≤ ≤
≤  

and 

2
1
max | ( , ) ( , ) | .i i

i F
f u x f w x L u w ∞

≤ ≤
− ≤ −� �  

 
 3.1 The Numerical Marching Scheme 
Let  Then for   Table 3.1 defines the discrete vector 
functions   that are involved in the numerical marching scheme, as well as the discrete functions that they 
approximate. 

0, 0.x h t k∆ = > ∆ = > max maxand1,..., 0,..., ,i M j N= =

 
Table 3.1 Vectors and Functions 

n
iR ↔ ( , )v ih nk  n

iQ ↔ ( ) ( , )xa ih v ih nk  n
iP ↔ ( , )xtv ih nk n

iW ↔ ( , )tv ih nk  

 
     We begin by performing a mollified differentiation in time of the noisy vector to determineεα 1

nR , ,  
and  The space marching scheme is defined as follows: 

1
nQ 1 ,nP

1 .nW
 

Initialize  Do steps (a) through (f) while  1.i = max 1.i M≤ −
a. 1

1 ( ( ( ))n n
i i

n
iR R h diag a ih Q−

+ = +   
b.   1 ( ( ,n n n n

i i i iQ Q h W f R ih+ = + − ))

1i

n
i

c. Choose perform mollified differentiation in time on   1 ,iδ + 1 1( )
i

n
iJ Qδ + +

d. set    
1

1
1 0,( ( (( 1) )) ( ( ))

i

n n
i tP diag a i h D J Qδ +

−
+ += +

e.   1
n n

i iW W h P+ = +
f.     1.i i= +

 
 
4. ERROR ESTIMATES 
From the numerical scheme, at each marching step, the exact mollified functions ,v xa v  and  can be 
determined with the local truncation errors evaluated at some intermediate points: 

tv
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2

( )
2

,x x

h
new v v h v v= + + x  

2

( ) ( ( , )) ( )
2

,x x t x

h
new a v a v h v f v x av= + +− xx  

2

( ) ( )
2

.t t tx t x

h
new v v h v v= + + x  

 
 
4.1 Stability
In order to determine stability, upper bounds must be found for |  and in terms of the 
initial data. 

| || ,n
iR ∞ || ||n

iQ ∞ || ||n
iW ∞

 
Theorem 4.1   If Assumptions 3.1 and 3.2 hold, then there exists a constant  such that 1C
 

1 0 0 0exp( ) max((|| || , || || , || || ) ( ).max (|| || ,|| || ,|| || ) n n nn n n
j j j C R Q W OR Q W ∞ ∞ ∞∞ ∞ ∞ ≤ + h  

 
Proof:  At each marching step,  

2
1|| || || || || || ( )n n n

i i iR R h Q Oξ+ ∞ ∞ ∞≤ + + h . 
Under Assumption 3.2,  

2
1 1|| || || || (|| || ) ( )n n n

i i iQ Q h W L O h+ ∞ ∞ ∞≤ + + + . 
Using Theorem 2.2 and Assumption 3.1,  

2
1|| || || || || || ( )n n n

i i iW W Q O
C hξ

δ+ ∞ ∞ ∞≤ + + h . 

Writing  1 max(1, , ),C
C ξξ
δ

=   

1 1 1max(|| || ,|| || ,|| || )n n n
i i iR Q W+ ∞ + ∞ + ∞ 1(1 ) max(|| || , || || , || || ) ( ),n n n

i i iC h R Q W O h∞ ∞ ∞≤ + +  
and, after iterations,  j

max(|| || ,|| || ,|| || )n n n
j j jR Q W∞ ∞ ∞ 1 0 0 0(1 ) max(|| || , || || , || || ) ( ).j n n nC h R Q W O h∞ ∞ ∞≤ + +  

The thesis follows immediately from the last expression.  
 
4.2 Error Analysis 
Let  where max(|| || , || || , || || ),n n n

i i ii R Q W∞ ∞ ∞∆ ∆ ∆ ∆= ( , ),n n
i iR R v ih nk∆ = −   and  ( ) ( , ),n n

i i xQ Q a ih v ih nk∆ = − n
iW∆ =

( , ).n
i tW v ih nk−  The following theorem states that the marching scheme is convergent. 

 
Theorem 4.2 Under Assumptions 3.1, 3.2, there exists a constant such that  2C
 

2
2 0exp( ) ( ) ( ).j C O h O∆ ≤ ∆ + + k  

 
Proof: From Assumptions 3.1 and 3.2, 

2
1|| || || || || || ( )n n n

i i iR R h Q Oξ+ ∞ ∞ ∞∆ ≤ ∆ + ∆ + h  
and  

1|| || || ||n n
i iQ Q+ ∞ ∞∆ ≤ ∆ +  2

2(|| || || || ) ( ).n n
i ih W L R O h∞ ∞∆ + ∆ +

Using Lemma 2.1,  
2 2

1|| || || || (|| || ) ( )n n n
i i i

C hW W Q k C k O hδ
ξ
δ+ ∞ ∞ ∞∆ ≤ + ∆ + + + , 

where is an upper bound, in magnitude, of higher order derivatives ofCδ .δρ  

Define 2 2max(1 , , ).C
CL ξξ
δ

= +  Then  

2
1 2(1 ) ( ) ( )i iC h O h O k+∆ ≤ + ∆ + +  

and, after iterations,  j
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2 0(1 ) j
j C h∆ ≤ + ∆ 2 2

2 0( ) ( ) exp(1 ) ( ) ( )O h O k C j h O h O k+ + ≤ + ∆ + + . 

 Notice that 0 (C hε
δ

∆ ≤ + ).  Thus, for fixed as and tend to 0 then so does ,δ , ,hε k .j∆   

      Therefore, the numerical marching scheme presented in section 3 is formally convergent. 
 
5. NUMERICAL EXAMPLES 
In this section, we present two examples of interest.  In each of these examples, the parameter ,p  introduced in 
section 2, has been set to 3.  The radii of mollification have been chosen automatically using the GCV method.        
      In each of the examples we begin by solving the corresponding direct problem in order to obtain the 
boundary data for the inverse problem. In what follows, when compared to the reconstructed solution, “exact 
solution” means   numerical solution of the direct problem. 
     Discretized measured approximations of the Cauchy data are modeled by adding random errors to the “exact 
solution” sampled data. The errors of all the recovered functions are measured by relative weighted - norms 
defined by 

2l

 
max max max

2 1/ 2 2 1/ 2

0 0 0 0max max max max

1 1[ | ( , ) | ] /[ |
( 1)( 1) ( 1)( 1)

maxM N M N
n
i

i n i n

v ih nk R v ih nk
M N M N= = = =

−
+ + + +� � � � ( , ) | ] .  
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Figure 5.1.1 Example 5.1. Exact and computed 

solutions for   1(0.5, ).u t
Figure 5.1.2 Example 5.1. Exact and computed 

solutions for  2 (0.5, ).u t
 
Example 5.1 – Chemical Reaction 
Identify and satisfying 1( , ),u x t 2 ( , ),u x t 1( ,0)u x 2 ( ,0)u x
 

1 2 1 2

1 2 1 2

6( ) 11( )
1 1

5( ) 11( )
2 2

1

2

1 1

2 2

( ) ( ) ,

( ) ( ) ,
0 0.5, 0 1,

(0, ) 0,
(0, ) 0,

( ) (0, ) ( ),
( ) (0, ) ( ),
0 1.

u u u u
t xx

u u u u
t xx

x

x

u u e e

u u e e
x t

u t
u t
u t t
u t t

t

α
α

− − −

− − −

= − +

= + −
< < < <

=
=

=
=

≤ ≤
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     Discretized versions of and  are determined by solving the direct initial value problem with  1( )tα 2 ( )tα
 

1 2 1 2( ,0) , ( ,0) 0, (1, ) 1 and ( ) (1, ) 0.xu x x u x u t u t= = = =  
 

     Table 5.1 shows the discrete relative errors of the solutions and the gradient components as functions of the 
amount of noise in the data,  For this table as well as for the figures, and  All the 
pictures correspond to maximum noise level      

2l
.ε 1/128t∆ = 1/100.x∆ =

0.005.ε =
     Figures 5.1.1-5.1.9 illustrate the excellent agreement between the exact and computed solutions, exact and 
computed initial conditions, and exact and computed gradient function components for example 5.1. Note the 
different scales used in the pictures. 
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Figure 5.1.3 Example 5.1. Exact and computed 

solutions for  1( ) (0.5, ).xu t
Figure 5.1.4 Example 5.1. Exact and computed 

solutions for  2( ) (0.5, ).xu t
 
 

0 0.1 0.2 0.3 0.4 0.5
x-values

0

0.1
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0.5

 

ε  0.0010 0.0050 0.0100 

1u  0.0099 0.0104 0.0112 

2u  0.0123 0.0122 0.0122 

1( )xu  0.0519 0.0521 0.0568 

2( )xu  0.0410 0.0407 0.0459 

1( )tu  0.0130 0.0129 0.0155 

2( )tu  0.0321 0.0322 0.0348 

Table 5.1 Example 5.1. Relative  errors in          
 

2l
[0,0.5] [0,1].×

Figure 5.1.5 Example 5.1. Exact and computed 
solutions for  1( ,0).u x  
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Figure 5.1.6 Example 5.1. Exact  1 ( , ).u x t

 
Figure 5.1.7 Example 5.1.Computed  1 ( , ).u x t
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Figure 5.1.8 Example 5.1.Exact  2 ( , ).u x t Figure 5.1.9 Example 5.1.Computed  2 ( , ).u x t

 
 
Example 5.2 - Lotka-Volterra System  
We restrict our attention to models where the coefficients, the initial and the boundary conditions are chosen 
such that the solution functions are positive and reach quasy-steady state (numerical equilibrium) in a finite time. 
     As in the previous example, we wish to identify and satisfying 1( , ),u x t 2 ( , ),u x t 1( ,0)u x 2 ( ,0)u x
 

1 1 1 1 1 1 1 2

2 2 2 2 2 2 2

2

1 1

2 2

( ) ( ) ( ( ) ( ) ( ) ),
( ) ( ) ( ( ) ( ) ( ) ),
0 0.5, 0 1,
(0, ) 0,

(0, ) 0,
( ) (0, ) ( ),
( ) (0, ) ( ),
0 1,

t xx

t xx

x

x

u u u b x c x u d x u
u u u b x c x u d x u

x t
t

u t
u t t
u t t

t

α
α

= + + +
= + + +

< < < <
=

=
=
=

≤ ≤

1

 

with 
1( ) 5,b x =  

2 ( ) 3,b x =  

1( ) 10,c x = −  
2

2 ( ) 2 ,c x x= −  

1( ) 2 ,d x x= −  

2 ( ) 3.d x = −  
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     Discretized   versions of  and are determined by solving the direct initial value problem with 1( )tα 2 ( )tα
  

1 ( ,0) sin( ),u x x= 1( , ) 0,u tπ = 2 ( ,0) 2 ( )u x x xπ= − − and  2 ( , ) 0.u tπ =
 

     Coexistence of these two species becomes possible only if 1 2

1 2

| |
c c
b b

>  and 2 1

2 1

|
d d
b b

> |,   [1], [4], [5].   

     Table 5.2 shows the discrete relative errors of the solutions and the gradient components as functions of the 
amount of noise in the data,  For this table as well as for the figures,  and  All the 
pictures correspond to the maximum level of noise   

2l
.ε 1/128t∆ = 1/100.x∆ =

0.005.ε =
                              
 

ε  0.0010 0.0050 0.0100 

1u  0.0095 0.0095 0.0123 

2u  0.0195 0.0196 0.0202 

1( )xu  0.0173 0.0174 0.0122 

2( )xu  0.0353 0.0353 0.0352 

1( )tu  0.0125 0.0125 0.0179 

2( )tu  0.0226 0.0226 0.0230 

Table 5.2 Example 5.2 Relative  errors in 
 

2l
[0,0.5] [0,1]×

 
 
     Figures 5.2.1-5.2.5 show the good agreement between the exact and computed solutions, exact and computed 
initial conditions, and exact and computed gradient function components for example 5.2. Note the different 
scales used in the pictures. 
 
5.1 Identification of Coefficients 
If the initial conditions are approximately known in Example 5.2, we examine the related new inverse problem: 
 
Example 5.2.a - Recovering Coefficients  
Identify  and satisfying 1( , ),u x t 2 ( , ),u x t 1( )b x 2 ( )b x
 

2
1 1

1 1 1 1 1 22
( ( ) ( ) ( ) ),

u u
u b x c x u d x u

t x
∂ ∂

= + + +
∂ ∂

 

2
2 2

2 2 2 2 2 12
( ( ) ( ) ( ) ),

u u
u b x c x u d x u

t x
∂ ∂

= + + +
∂ ∂

 

1 ( ,0) sin( ),u x x≈ 2 ( ,0) 2 ( ),u x x xπ≈ − −  
0 0.5, 0x t< < < < 1,  

1

2

1 1

2 2

(0, ) 0,
(0, ) 0,

( ) (0, ) ( ),
( ) (0, ) ( ),
0 1.

x

x

u t
u t
u t t
u t t

t

α
α

=
=

=
=

≤ ≤
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Figure 5.2.1 Example 5.2. Exact and computed 

solutions for  1(0.5, ).u t
Figure 5.2.2 Example 5.2. Exact and computed 

solutions for  2 (0.5, ).u t

     Assuming exact measurements at the formulae for  (similarly for  is given by 0,t = 1( ),b x 2 ( )),b x
2

21 1
1 1 1 12( ) [ ( )( ) ( ) ] / .

u u
b x c x u d x u u u

t x
∂ ∂

= − − −
∂ ∂ 1 2 1  

 

0 0.2 0.4 0.6 0.8 1
time-values

0.2

0.4

0.6

0.8

1

 
0 0.2 0.4 0.6 0.8 1

time-values

0

1

2

3

4

5

 
Figure 5.2.3 Example 5.2. Exact and computed 

solutions for  1( ) (0.5, ).xu t
Figure 5.2.4 Example 5.2. Exact and computed 

solutions for  2( ) (0.5, ).xu t
     
     Note that it is possible to recover any pair of unknown coefficients (one in each partial differential equation). 
     For noisy data, this expression is useless since it requires the evaluation of two partial derivatives from 
inexact data. Moreover, it can only be used at points where is different from zero. This implies that the 
numerical reconstruction of the coefficients is not possible near the active boundary and we have to restrict the 
solution of the inverse problem for the coefficients to a suitable compact subset of the original domain.  

1u

     The set of admissible points, , where the mollified or regularized formula for the coefficients can be 
applied, is defined as the set of grid points  for which  The set  can 
be completely determined  before starting the marching procedure or it can be dynamically built during the 
marching scheme. The mollified or regularized formula for the approximate identification of  is  

ε
δΓ

( ,0), 0 0.5,i ix x< < 1( ) ( ,0) 3 0iu xε
δ δ> > . ε

δΓ

1( )b x
 

2
21 1

1 1 1 1 12

( ) ( )
( ) ( ) [ ( )(( ) ) ( )( ) ( ) ] /( )

u u
b x c x u d x u u u

t x

ε ε
ε εδ δ
δ δ

∂ ∂
= − − −

∂ ∂ 2 1
ε ε ε
δ δ δ  
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Figure 5.2.5 Example 5.2. Exact and  computed  

solutions for  2 ( ,0).u x
Figure 5.2.6  Example 5.2. Exact and computed 

coefficients for  1( ).b x
 
where the temporal partial derivatives are obtained, at each step in space, from the marching algorithm. An 
estimate of the error term will be provided elsewhere. 1 1 ,

|| ( ) ||b b ε
δ

ε
δ ∞ Γ

−

     Figure 5.2.6 shows the qualitative behavior of the reconstructed coefficient  on the interval 
with  

1( ) 5b x =
(0,0.5) ε

δΓ [0.03,0.5].⊆
 
6. CONCLUSIONS 
The approach and results offered in this presentation indicate that the methodology is very useful to 
approximately recover solutions, initial conditions and gradient components of nonlinear systems of partial 
differential equations, from Cauchy data given at the active boundary of the domain. If the initial conditions of 
the original direct problem are known, it is also possible to identify suitable space dependent coefficients in 
Lotka-Volterra biological systems with diffusion. An extension of the procedures to higher dimensional cases is 
straightforward. 
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