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Abstract - Assuming only Cauchy noisy data at the active boundary, we investigate the inverse problem of
numerically recovering the solutions, gradient distributions and initial conditions, in nonlinear systems of
parabolic partial differential equations with space dependent coefficients, by means of stable space marching
methods. If the initial condition of the system is known, we also discuss, in the Cauchy data case, the inverse
problems associated with the identification of some of the space dependent coefficients in the Lotka-Volterra
model with diffusion, while marching in space. Stability and error analysis of the algorithms, together with
numerical results of interest, are presented.

1. INTRODUCTION
A stable numerical marching scheme based on discrete mollification is used to recover the solution vector
u(x,t), including u(x,0), inanonlinear parabolic system of the form

U = (@09u,), + f (u,x),

O<x<x, O<t<t,

u(o,t) =0,
u, (0,t) = e(t),
0<t<t,

with positive constants x, and t,.
Note that in this problem, the data vector «(t) is known approximately and the space dependent diffusion,
a(x), and the interaction function, f(u,x),are known throughout the rectangular domain. The proposed

algorithm does not require a priori information about the noise in the data and the mollification parameters are
chosen automatically at each step using the Generalized Cross Validation (GCV) method, [6]. For a detailed
description of mollification techniques, the reader is referred to [2].

In arelated problem, if the initial condition u(x,0) is given, we study the approximate identification of some
of the space dependent coefficients in the Lotka-Volterra model with diffusion. For instance, given F
interactive species, the source elements are given by

fi(u,x):ui(h(x)+il3lj(x)uj),i =1...,F,

and it is possible to recover F unknown coefficients from the set of F(1+ F) components of the F dimensional

vector b and the F x F dimensional matrix B.

This article is organized as follows: in section 2, we state basic properties and estimates corresponding to
mollification. In section 3, the numerical marching scheme is introduced. The proof of stability and
convergence is given in section 4. Two numerical examples of interest are shown in section 5. The second one
illustrates the general procedure for the identification of space dependent coefficients in some specific
biological models.

2. DISCRETE MOLLIFICATION
Let g:1 =[0,1] —» R and G={g,}", bethe discrete version of g defined ontheset K ={y, :ie Z,1<i <M},
0<y, <---<vy, <1 Thediscrete § - mollification of G is the convolution with the Gaussian kernel

Ap5_1 exp(— y2 j, yel ,
p,(y)= )

0, yel ,

s
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-1
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where |, =[-pd, pd], p>0, 6 >0and A, :[ Iexp(—sz)dsj :
-p

That is, for every ye I,
M S
3,6(0=29 [p;(y-9)ds,
i=1 S

wheres, =0,5, =1, and § =%,i =12..,M-1.

The radius of mollificationd, is chosen automatically using the GCV method.

The perturbed version of G is given by G° ={g’ =g +¢ :|¢ |<¢e i=12..,M}, where theg,'s are a
family of independent random variables, uniformly distributed in the interval [-¢,€], and & represents the
maximum level of noisein the data. That is, if ||.||. denotes the maximum norm, then ||G-G* ||_ (< e&.

First and second derivatives are approximated, respectively, using the finite difference operators

D, (9(x)) =[g(x+ AX) — g(x— AX)] /(2AX)
and
D, (9(x) =[9(X+ AX) + 2g(x) — g(x— AX)] /(AX)?

ontheinterval I; = [ pd + Ax, 1— pd — AX].
The following lemma establishes the numerical properties of discrete mollified differentiation, as defined
above, for fixed 6. Note that, throughout the paper, C denotes a generic constant that is independent of §.

Lemma 2.1 (Stability and Convergence) If ge C*(1),g°e C°(l), and ||G-G"||_,<e, then there exist
constants C and C;, such that
lg-J,G° ..., < C(0+ £+ AXx),

10,(3,6) a_g” <C(£+AX
o ox e 5

) +C, (AX),
and

2

2°g £+ AX
D’(JG)-——|., <C
15,°0,67) == F L., < ¢

2

)+C, (AX)".
The proof of Lemma 2.1 can be found in [3].

We define D (J,G) = D,(J,G) |

The next theorem provides an upper bound for the maximum norm of the operator D;.

by restricting D,(J;G) to the grid points of I~§ NK.

[sNK?

Theorem 2.2 There exists a constant C such that

ID5G|

. <
oo, I s MK

C

5 IGI. « -
The proof of thistheorem can also be found in [3].

3.MARCHING SCHEME

The regularized problem is obtained by mollifying the original system. The numerical marching scheme attempts
to compute a meaningful approximation to the solution, the initial condition, and gradient distribution vectors,

V(X,t) = (v, (%, 1),..., Ve (X,1)7,
V(%,0) = (V(%,0),..., Vs (x,0))7,
v, (6 1) = (V) (%, 1)+, (Ve ), (X, 1)

and

Vi (%, 0) = (), (), (% ), (X, 1)
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of the mollified system of parabolic partial differential equations given by

v = @00V, + f(v,X),
O<x<x, O<t<t,

v(0,1) =0,
V>< (O7t) = ‘]sag (t)7
0<t<t,.

The available data function o (t)is a discrete vector function such that || & —«a||. (<& and it has been

mollified.
In order to introduce a stable numerical scheme, we require the FxF diagonal diffusivity matrix
o(x) =diag(a,(x),...,a: (X)) to be positive and the forcing term to be uniformly bounded and Lipschitz with

respect to its first argument. The following two assumptions are quite natural:

Assumption 3.1 For all xe [0, x ], there exists a constant ¢ such that

1mi(rlFa1(x)2§>O.

Assumption 3.2 For all xe [0,x], and functions u,w:[0,x] — R thereexist constants L, and L, such that

max | f,(u,x)I< L,

and
max | f(u,x)—f(w,x)[<L,[Ju-w][ .
Ii<F

3.1 The Numerical Marching Scheme
Let Ax=h>0, At=k>0. Then for i=1..,M_, ad j=0,..,N,,, Table 3.1 defines the discrete vector

functions that are involved in the numerical marching scheme, as well as the discrete functions that they
approximate.

Table 3.1 Vectors and Functions
R & v(ihnk) | Qo a(h)y,(hnk) | R e v, (ihnk) [ W o y(ihnk)

We begin by performing a mollified differentiation in time of the noisy vector o to determineR",Q', B",
and W". The space marching scheme is defined as follows:

Initializei =1. Do steps (a) through (f) while i <M 1.
a. R}, =R"+h (diag(a(ih)) Q"
b.QL =Q"+hW" - f(R".ih)

c. Choose 6,,,, perform mollified differentiationintimeon J,; (Q7,)
d. set R, =(diag(a((i +)h)) "Dy, (3, QL)

e W) =W'+hP’

f.i=i+1

4. ERROR ESTIMATES
From the numerical scheme, at each marching step, the exact mollified functions v, av, and v, can be

determined with the local truncation errors evaluated at some intermediate points:



MO7
4

hZ
new(v) =v+hv, +?vxx,
2

new(av,)=av, +h(v,—f(v, x))+h?(avx)xx,

hZ
naN(vt) :Vt +hvt>< +?(Vt)xx'

4.1 Stability
In order to determine stability, upper bounds must be found for ||R" |, ||Q" | and |[W" | in terms of the
initial data.

Theorem 4.1 If Assumptions 3.1 and 3.2 hold, then there exists a constant C, such that
max (|| RY L 11Q L. W 1) < exp(C) max((I RY 1L 11 Q5 I I IL) +O(h).

Proof: At each marching step,

IR LR IL +&h1IQ" L. +O(h?) .
Under Assumption 3.2,

QL ILIQ" L +h(IW" [l +L,)+O(h%).
Using Theorem 2.2 and Assumption 3.1,
Céh

L IW" L +——11Q" IL +O(h*) .

IW?
0

C¢
) )
max(|| RL, LM QLy 1L IWE, I1L) < @+ Chy max (I R ILI1Q 1L, W™ I1.) + O(h),
and, after | iterations,
max(|| R L. 1Q] I W L) < (@+Chy! max(| R} L. 11Q5 I 1w I1.) +O(h).
The thesis follows immediately from the last expression.

Writing C, = max(L ¢,

4.2 Error Analysis
Let A, =max(| AR" |1l AQ" IL.Il AW" |I.), where AR" = R" —v(ih,nk), AQ" =Q"—a(ih) v, (ih,nk), and AW" =

W" —v, (ih,nk). The following theorem states that the marching scheme is convergent.

Theorem 4.2 Under Assumptions 3.1, 3.2, there exists a constant C, such that
A, <exp(C,) A, +0O(h*) + O(Kk).

Proof: From Assumptions 3.1 and 3.2,
IAR, IL<IIAR' L +&h[|AQ" |L. +O(h”)

and

1AQT < 1AQ" [+ h(IAW" |L. +L, [IAR" |L.) + O(h*).
Using Lemma 2.1,
Céh

)

whereC; is an upper bound, in magnitude, of higher order derivatives of p;.

AW IL<IW" L +=—=—(1AQ" L. +k)+C;k* +O(h?) ,
— cé
Define C, = max(1+ L2,§,7). Then

A, <@+ C_Zzh)Ai +0(h*) +0(k)
and, after ] iterations,
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A; <(1+C,h)' A, +O(h?) +O(k) < exp(1+C, j h)A, +O(h?) + O(K) .
Notice that A, S%(e+h). Thus, for fixed 6, as &, h,and ktend to O then so does A;.

Therefore, the numerical marching scheme presented in section 3 is formally convergent.

5.NUMERICAL EXAMPLES
In this section, we present two examples of interest. In each of these examples, the parameter p, introduced in

section 2, has been set to 3. The radii of mollification have been chosen automatically using the GCV method.

In each of the examples we begin by solving the corresponding direct problem in order to obtain the
boundary data for the inverse problem. In what follows, when compared to the reconstructed solution, “exact
solution” means numerical solution of the direct problem.

Discretized measured approximations of the Cauchy data are modeled by adding random errors to the “exact

solution” sampled data. The errors of all the recovered functions are measured by relative weighted |1%- norms
defined by

1 M o Niax ] 1 M pax Ninax .
h, k _pn 2 1/2/ h, k 2 1/2.
v & M- R — (2 2 IMihnk ]

0.2 0
\ \ \ \ \ \ \ \ \ \

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time-values time-values

Figure5.1.1 Example 5.1. Exact and computed Figure5.1.2 Example 5.1. Exact and computed
solutionsfor u,(0.5,t). solutions for u,(0.5,t).

Example 5.1 — Chemical Reaction
Identify u, (x,t), u,(x,t), u(x,0)and u,(x,0) satisfying

W), = (), —€™) 4 gu ),
(Uy), = (), + &%) —g i)
O0<x<050<t<],

u (0,t) =0,

u,(0,t) =0,

(W), (0,1) = e (1),

(uz)x o= @, (t),

0<t<l.
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Discretized versions of ¢, (t) and o, (t) are determined by solving the direct initial value problem with

W (%,0) =X, U,(x,0) =0,y (Lt) =1and (u,), (L,t) = 0.

Table 5.1 shows the discrete relative | errors of the solutions and the gradient components as functions of the
amount of noise in the data, . For this table as well as for the figures, At=1/128and Ax=1/100. All the
pictures correspond to maximum noise level £ = 0.005.

Figures 5.1.1-5.1.9 illustrate the excellent agreement between the exact and computed solutions, exact and
computed initial conditions, and exact and computed gradient function components for example 5.1. Note the
different scales used in the pictures.

-1.2
0 \ \ \ \ \ \ \ \ \ \

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time-values time-values

Figure5.1.3 Example 5.1. Exact and computed Figure5.1.4 Example 5.1. Exact and computed
solutionsfor (u,),(0.5,t). solutionsfor (u,),(0.5,t).
05 —
o//
04 £ 0.0010 | 0.0050 | 0.0100
o}
i U, 0.0099 | 0.0104 | 0.0112
o}
03 u, 0.0123 | 0.0122 | 0.0122
| /2 (u), | 00519 | 00521 | 0.0568
joi
0s | g (u,), 0.0410 | 0.0407 | 0.0459
| /@ (u), | 00130 | 00129 | 0.0155
//@/ (u,), | 00321 | 0.0322 | 0.0348
0.1 — ,
0 Table 5.1 Example 5.1. Relativel® errorsin
i o// [0,0.5]x[0,1].
QN//
° . \ \ \ \

0 0.1 0.2 03 04 0.5
x-values

Figure5.1.5 Example 5.1. Exact and computed
solutionsfor u, (x,0).
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Figure5.1.6 Example 5.1. Exact u,(x,t). Figure5.1.7 Example 5.1.Computed u, (X,t).
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Figure5.1.8 Example 5.1.Exact u,(x,t). Figure5.1.9 Example 5.1.Computed u, (X,t).

Example 5.2 - Lotka-Volterra System

We restrict our attention to models where the coefficients, the initial and the boundary conditions are chosen

such that the solution functions are positive and reach quasy-steady state (numerical equilibrium) in afinite time.
Asin the previous example, we wish to identify u, (x,t), u,(x,t), u,(x,0) and u,(x,0) satisfying

(ul)t = (ul)xx + ul(bl(x) + C_I_(X)ul + dl(X)UZ)!
(), = (W) + U, (B, (X) + €, (X)u, + d, (X)),
O0<x<050<t<],
(0t)=0,
u,(0,t) =0,
(W), (0,t) = e (1),
(U,),(0,1) = e, (1),
0<t<],
with
b (x) =5,
b,(x) =3,
¢ (x) =-10,
C,(X) = -2%?
d,(x) =-2x,
d,(x) =-3.
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Discretized versionsof ¢, (t) and o, (t) are determined by solving the direct initial value problem with

u,(x,0) =sin(x), u,(z,t) =0, u,(x,0)=-2x(z —x) and u,(z,t) =0.

Coexistence of these two species becomes possible only if |% > % | and |% > % [, [11,[4],[5].

Table 5.2 shows the discrete relative | errors of the solutions and the gradient components as functions of the
amount of noise in the data, £. For this table as well as for the figures, At=1/128 and Ax=1/100. All the
pictures correspond to the maximum level of noise £ = 0.005.

& 0.0010 0.0050 0.0100
U 0.0095 0.0095 0.0123
u, 0.0195 0.0196 0.0202

(u), | 00173 0.0174 0.0122

(u,), | 00353 | 0.0353 0.0352
(), | 00125 | 00125 0.0179
(u,), | 0.0226 0.0226 0.0230

Table 5.2 Example 5.2 Relative 1? errorsin
[0,0.5]x[0,1]

Figures 5.2.1-5.2.5 show the good agreement between the exact and computed solutions, exact and computed
initial conditions, and exact and computed gradient function components for example 5.2. Note the different
scales used in the pictures.

5.1 Identification of Coefficients
If theinitial conditions are approximately known in Example 5.2, we examine the related new inverse problem:

Example 5.2.a - Recovering Coefficients
Identify u, (x,t), u,(x,t), b(x) and b,(x) satisfying

ou, 9y

i ij u, (b, () +¢,(X)u, +d, (Xu,),

u, _ ﬂJr u, (b, (X) + ¢, (Xu, +d, (X)u,),
o o

W (x,0) = sin(x), u,(x,0) = —2x(7 — X),
0<x<050<t<],

u,(0,t) =0,

u,(0,t) =0,

(u),(0,t) = o, (1),

(U;),(0.8) =, (1),

0<t<1.
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time-values 0 0.2 0.4 0.6 0.8 1

time-values

Figure5.2.1 Example 5.2. Exact and computed Figure5.2.2 Example 5.2. Exact and computed
solutionsfor u, (0.5,t). solutionsfor u,(0.5,t).

Assuming exact measurements at t = 0, the formulae for b (x), (similarly for b, (X)), isgiven by
oy 0y

E e - (X)(u)” —d,(Xuu,]/u,.

b () =[

. . 0 0.2 0.4 0.6 0.8 1
time-values time-values
Figure5.2.3 Example 5.2. Exact and computed Figure5.2.4 Example 5.2. Exact and computed
solutionsfor (u,), (0.5,t). solutionsfor (u,), (0.5,t).

Note that it is possible to recover any pair of unknown coefficients (one in each partial differential equation).
For noisy data, this expression is useless since it requires the evaluation of two partial derivatives from
inexact data. Moreover, it can only be used at points where u, is different from zero. This implies that the

numerical reconstruction of the coefficients is not possible near the active boundary and we have to restrict the

solution of the inverse problem for the coefficients to a suitable compact subset of the original domain.

The sat of admissible points, T, where the mollified or regularized formula for the coefficients can be

applied, is defined as the set of grid points (x,0), 0< x < 0.5, for which (u,)5(%,0)>30>0. Theset T can
be completely determined before starting the marching procedure or it can be dynamically built during the

marching scheme. The mollified or regularized formulafor the approximate identification of b (x) is

500 =28 - T g 9 - dvs 1w
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Figure5.2.5 Example 5.2. Exact and computed Figure5.2.6 Example 5.2. Exact and computed

solutionsfor u,(x,0). coefficientsfor b, (x).

where the temporal partial derivatives are obtained, at each step in space, from the marching algorithm. An
estimate of the error term || b, —(b)5 || .. will be provided elsewhere.

Figure 5.2.6 shows the qualitative behavior of the reconstructed coefficient b(x)=5 on the interval
(0,0.5) with T; < [0.03,0.5].

6. CONCLUSIONS

The approach and results offered in this presentation indicate that the methodology is very useful to
approximately recover solutions, initial conditions and gradient components of nonlinear systems of partial
differential equations, from Cauchy data given at the active boundary of the domain. If the initial conditions of
the original direct problem are known, it is aso possible to identify suitable space dependent coefficients in
Lotka-Volterra biological systems with diffusion. An extension of the procedures to higher dimensional casesis
straightforward.

Acknowledgment
Thiswork was partialy supported by a C. Taft fellowship.

REFERENCES

1. AW. Leung, Systems of Nonlinear Partial Differential Equations: Applications to Biology and
Engineering, Kluwer, Dordrecht-Boston, 1989.

2. D.A. Murio, Mollification and Space Marching, chapter 4, Inverse Engineering Handbook, (ed. K.
Woodbury ), CRC Press, Boca Raton, Florida, 2002, pp. 219-326.

3. D.A. Murio, C.E. Mgjiaand S. Zhan, Discrete Mallification and Automatic Numerical Differentiation,
Computers Math. Applic. (1998) 35(5), 1-16.

4. C.V.Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New Y ork, 1992.

5. A. Okubo, A. and S. Levin, Diffusion and Ecological Problems: Modern Perspectives, 2™ ed. Springer-
Verlag, New York, NY, 2001.

6. G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conferences Seriesin Applied
Mathematics, SIAM, Philadel phia, 1990.



